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A B S T R A C T

Topological data analysis (TDA) is gaining popularity for classifying complex time series.
Its integration with machine learning algorithm architectures shows promise in advancing
predictive capabilities for various dynamic systems. Of interest to this paper is real-time
applicability of TDA, targeting high-rate engineering systems. The study focuses on identifying
a moving boundary condition on a fixed roller beam by analyzing the system’s frequency.
Point clouds are constructed from collected time series measurements based on the embedding
theorem, and a time series of TDA features is created by employing a set of two sliding windows.
From these features, the maximum persistence of homology groups is identified as one that is
promising to perform real-time time series identification and is applied to laboratory datasets
obtained from the DROPBEAR (Dynamic Reproduction of Projectile in Ballistic Environments
for Advanced Research) testbed. Results demonstrate that the maximum persistence of the 0th

and 1st dimensional persistence homology groups, namely 𝐻0 and 𝐻1, can provide a stable
estimation of the cart location and have a lower noise level than other TDA features, with the
maximum persistence of 𝐻1 outperforming 𝐻0. The maximum persistence of the 2nd dimensional
persistent homology group, 𝐻2, is shown to be useful for detecting noise created by impact
loads. Results also indicate that TDA features can be used to track the cart location within an
acceptable range and perform similarly to or better than a short-time Fourier transform for
more rapid dynamics, thus showing promise for real-time applications.

. Introduction

Algebraic topology is a powerful method to extract pseudo-states capable of representing the essential dynamics of a system. The
xtraction of these pseudo-states is often based on Takens’ embedding theorem [1]. Once extracted, the pseudo-states can be mapped
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to the dynamic states of the system of interest using a function that is frequently constructed using machine learning. Topological
data analysis (TDA) combines algebraic topology with modern mathematical tools to further analyze the shape of data and is seen as
 more robust method compared with pure algebraic topology-based strategies [2,3]. TDA has been successfully applied to analyze
omplex and chaotic dynamic systems [4]. Specifically leveraging persistent homology, TDA can be used to detect bifurcations
ithin mechanical dynamics [5] and periodicity in time series [6–8].

Over the last two decades, TDA features have been integrated into machine learning algorithms such as neural networks to
lassify complex problems across various applications, including electrocardiograms [9,10], physiological data [11], structural health

monitoring [12], and showed improvements in time series classification over conventional approaches [13–15].
Of interest to this paper is the real-time state estimation of dynamic systems using time series measurements, in particular for

igh-rate dynamic systems. High-rate dynamic systems are defined as systems experiencing dynamic events of amplitudes higher
han 100 𝑔𝑛, where 𝑔𝑛 is the gravitational pull near the surface of the earth, over a duration of less than 100 ms (ms). Examples
f high-rate systems include active blast mitigation systems, advanced weaponry, automotive airbag deployment mechanisms, and
ypersonic vehicles [16,17]. A critical motivation in conducting real-time state estimation for these systems is in enabling feedback
echanisms that can be used to improve operational performance and safety. However, these systems typically exhibit (1) large
ncertainties in the external loads, (2) high levels of nonstationary behavior and heavy disturbances, and (3) unmodeled dynamics
enerated from changes in the system configurations, which dramatically complicates the state estimation task. Existing efforts
n the literature conducting real-time state estimation for high-rate dynamics include work from Joyce et al. [18] that developed

a sliding mode observer-based algorithm with recursive least square parameters to accurately identify fundamental frequencies
of the system, Downey et al. [19] that studied an algorithm to identify structural frequencies in real-time by minimizing errors
within a set of finite elements, and where Wu and Todd [20] applied a damage identification framework using Gaussian process
regression within a nonlinear autoregressive model, incorporating real-time weight updates. Additionally, Yan et al. [21] introduced
an algorithm based on a model reference adaptive system capable of sub-millisecond computing capabilities.

All of these examples were based on physical representations. Here, we are concerned with data-driven techniques mapping
ime series measurements to structural states and propose leveraging TDA features in this endeavor. Yet, a notable challenge in
pplying topology-based techniques is in the restrictive nature of algebraic topology to stationary problems. We have proposed
n [22] to forecast high-rate systems by decomposing a nonstationary system into a set of pseudo-stationary systems, and using

an ensemble of recurrent neural networks (RNNs) to combine weighted predictions. This decomposition was achieved by creating
a set of delay vectors, each of them comprising different essential dynamics of the system. The method showed great promise at
forecasting nonstationary time series and was later combined with the model reference adaptive system-based algorithm proposed
by [21] to create a state estimator using step-ahead predictions, thus effectively eliminating computing time lag [23].

In this paper, we investigate whether TDA features extracted from point clouds formed by delay vectors could be used as features
o better explain the essential dynamics of a high-rate system, ideally providing a direct link from the point clouds to dynamic states.
ence, we study a technique to extract TDA features in real-time using two sliding windows to form a time series of TDA features. The

echnique is presented in the context of a single-harmonic-dominated system with changing boundary conditions, with applications
o systems of higher dimensions left to future work. To do so, we first visit a set of TDA features that could be utilized with time
eries and select key TDA features to be studied. After, we investigate how TDA feature extraction can be performed sequentially
nd how point clouds from time series data can be effectively constructed to extract meaningful values.

To empirically support these objectives, numerical studies are performed on laboratory datasets obtained from a testbed
termed dynamic reproduction of projectiles in ballistic environments for advanced research (DROPBEAR). The testbed consists of a
antilevered beam equipped with a fast rolling cart that is used to reproduce fast changes in boundary conditions. Our application
roblem of interest is the real-time estimation of the moving boundary condition on the cantilever beam through the movement
f the cart. We chose this problem because (1) experimental datasets have been made publicly available [24], and (2) DROPBEAR

datasets are well suited for validating and benchmarking performance of high-rate algorithms [24]. Note that the authors’ intent is to
ventually apply TDA in the high-rate realm, thus providing a time-based data analysis method that could surpass frequency-based
ethods in terms of computing time, also anticipating that the use of TDA features could significantly ameliorate the convergence

f on-the-edge machine learning representations. However, the issue of computing time, which, when conducting state-of-the-art
DA computations, does not fall within the time frames necessary for high-rate systems health monitoring, is ongoing and therefore

eft for future work.
The rest of the paper is organized as follows. Section 2 provides background information on the application of TDA. Section 3

describes the algorithm developed for deploying TDA in real-time, as well as the DROPBEAR testbed. Section 4 presents and discusses
the results obtained from synthetic and experimental datasets. Section 5 reports conclusions and recommendations.

2. Background

This section presents the background of TDA, how it can be applied to time series data, and defines key TDA features of interest.
TDA can be used to study the topology of point clouds using fundamental concepts of modern mathematics [25] which exploit the

categorical (or functorial) relationship between topology and algebra. This is often done using homology theory, where homology
groups and group homomorphisms are induced by associated topological spaces and the continuous mappings between them. For
example, Euclidean space R𝑛 and its subspaces, R𝑛−𝑖 where 𝑛, 𝑖 ∈ Z>0 and 𝑖 < 𝑛 have a topological structure induced by the Euclidean
metric and subspace topologies. The inclusion maps 𝑖 ∶ R𝑛−𝑖 ↪ R𝑛 between those spaces are continuous. This induces a matching
homological group representation of finite dimensional (quotient) vector spaces and linear transformations. The homology groups
2 



A. Razmarashooli et al. Mechanical Systems and Signal Processing 224 (2025) 112048 
Fig. 1. The filtration of Rips complex. There are 20 points and 20 individual connected components in (a) (feature 𝐻0). As the balls of radius 𝜖 expand, they
connect and merge into one connected component. Eventually, all of the points connect; thus, 𝐻0 remains one connected component for all time, and a hole
(feature 𝐻1) is initially born within the connected components for 𝜖 = 0.32 (b). This hole dies for 𝜖 ≥ 1.79 as shown in (c). The associated persistence diagram
(PD) is plotted in (d).

track, measure, and algebraically encode a given data’s topological characteristics such as connected components, holes, and voids,
allowing for ingestion into algorithmic/automated implementations. These groups are denoted as 𝐻𝑘(𝑋), where 𝑋 is a topological
space and 𝑘 is the homological dimension. For instance, 𝑘 = 0 algebraically represents and encodes the connected components of
𝑋, 𝑘 = 1 its 1-dimensional holes, 𝑘 = 2 its 2-dimensional holes or voids, etc.

Similarly in computational topology, one characterizes the topological space for a finite point cloud (FPC) embedded in a metric
space such as R𝑛 analyzing characteristics of its induced homology groups [26]. For example, one can determine the order or rank
of its linearly independent generators in each homological dimension. In effect, this ‘‘counts’’ the number of connected components
of the topological space 𝑋 in 𝐻0(𝑋), the number of 1-dimensional holes of 𝑋 in 𝐻1(𝑋), the number of voids of 𝑋 in 𝐻2(𝑋), etc.
These counts, which are also known to be topological invariants, are often called the 𝑘t h-Betti numbers for each 𝐻𝑘(𝑋). Generation
of the underlying spaces associated to these homology groups can be done through a variety of methods, but often starts with the
construction of a simplicial complex filtration that creates an evolution of inclusive subspaces using simplices whose vertices are
elements of the FPC [25]. In this manner a filtration assigned to the FPC can be utilized to define its topological invariants. A
filtration’s simplicial complexes associated with the FPC are dependent on the R-valued scale parameter 𝜖, which is the evaluation
of the embedding space’s metric between the FPC’s points. For example, in R𝑛, 𝜖 would be the evaluation of the 𝑛-dimensional
Euclidean distance between two given points of the embedded FPC. There are two major methods to associate a simplicial complex
with its underlying point cloud data, namely the Cech and Vietoris–Rips complexes [25]. In this paper, our method utilizes the
Vietoris–Rips complex due to its computation efficiency for large datasets. With the Vietoris–Rips method, a group of points spans
a 𝑘-simplex if and only if pairwise distance between FCP vertices is less than or equal to 𝜖 [25]. The interested reader will find a
more formal mathematical definition of TDA in the Appendix, including the use of Vietoris–Rips complex as a filtration technique.

In practical applications, determining the value of 𝜖 to identify topological features of interest in an FPC can be elusive or
intractable [25]. To address this challenge, one can use the above-mentioned filtration methodology, which continuously dilates
the R-valued 𝜖 > 0, and for each 𝜖, generates simplicial complexes. As we let 𝜖 → ∞, new topological features represented in the
complexes based on the original manifold may appear or disappear, and the homology groups encode those changes for further
processing. Persistent homology (PH) tracks these changes by associating each topological feature with a birth and death time as
R≥0-valued order pairs or (𝑏𝑖𝑟𝑡ℎ, 𝑑 𝑒𝑎𝑡ℎ) = (𝑏, 𝑑) pairs. The total output is a persistent homology dimension based multi-set of all
topological features represented by (𝑏, 𝑑) pairs, where 𝑏 < 𝑑, can be visualized in the form of a persistence diagram (PD) [27]. These
diagrams can be used to extract several PD based comparative metrics or representations, including bottleneck and Wasserstein
distances metrics, the persistence landscape and silhouette representations, and the number of off-diagonal points metric [25]. To
illustrate, Fig. 1 shows the filtration of Vietoris–Rips complexes obtained from a point cloud consisting of 20 equally scattered points
in space, each surrounded by expanding balls of radius 𝜖. Initially, there are 20 connected components, one for each point, forming
the initial 0th persistent homology dimension 𝐻0 (Fig. 1(a)). As the 𝜖-radius of the balls increases, they create a simplicial complex,
here for 𝜖 = 0.32. For that radius, because all points are equidistant, 𝐻0 represents a single connected component, and 𝐻1 begins to
track and measure the lifespan from the creation of a hole (Fig. 1(b)). This hole 𝐻1 then dies at 𝜖 = 1.79 (Fig. 1(c)). The associated
PD that tracks the evolution of 𝐻0 and 𝐻1 is plotted in Fig. 1(d).

2.1. TDA features of interest

Several TDA based features can be extracted from the persistence diagram. Of interest to this paper are those that can be applied
to the study of time series. They are briefly described in what follows. In this work, we make use of the Giotto-TDA Python package,
which offers a more straightforward application programming interface [28].

Persistence Diagram: Let 𝐷1 and 𝐷2 be two persistence diagrams where each diagram consists of a set of points in the plane.
The points in 𝐷 are denoted as {𝑥 (𝑏 , 𝑑 )} for 𝑖 = 1, 2,… , 𝑛, where 𝑥 represents a point, 𝑏 represents the birth time (birth of a
1 𝑖 𝑖 𝑖 𝑖 𝑖

3 
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topological feature) and 𝑑𝑖 represents the death time (death of a topological feature) of the 𝑖th feature. Similarly, the points in 𝐷2
are denoted as {𝑥𝑗 (𝑏𝑗 , 𝑑𝑗 )} for 𝑗 = 1, 2,… , 𝑚. A trivial diagram, denoted as 𝐷𝑡, is an empty diagram that has no points. In other

ords, 𝐷𝑡 contains no features and is represented as an empty set 𝐷𝑡 = ∅.

Maximum Persistence: Maximum persistence is the longest persistence time (death−birth) for a given topological feature
(connected components, loops, voids, etc.) over a range of scale parameters. Maximum persistence features are considered the most
robust and meaningful features, as they are less likely to be artifacts of noise or small-scale fluctuations in the data. This feature
can identify significant and stable topological features in the data [29].

Bottleneck Distance: Bottleneck distance is a metric used to compare two persistence diagrams and is defined as the infimum of the
maximum distance between matched points in the two diagrams. Cohen-Steiner et al. introduced the Bottleneck distance and proved
its stability, whereas small perturbation of the input data lead to small changes in the persistence diagram [30]. When calculating
the bottleneck distance, one must find the largest distance (𝐿∞ norm) between corresponding points in two persistence diagrams by
onsidering all possible pairings [3]. The bottleneck distance between two persistence diagrams 𝐷1 and 𝐷2, denoted as 𝑑𝐵(𝐷1, 𝐷2),

is defined as:

𝑑𝐵(𝐷1, 𝐷2) = inf
𝛾

max
𝑥∈𝐷1

{‖𝑥 − 𝛾(𝑥)‖∞} (1)

Here ‖𝑥 − 𝛾(𝑥)‖∞ represents the supremum norm (𝐿∞ norm) of the distance between the points in the persistence diagram 𝐷1 and
their corresponding matched points in 𝐷2 under the bijection 𝛾 ∶ 𝐷1 → 𝐷2. The infimum is taken over all possible bijections [31].

To evaluate our system’s effectiveness based on a single diagram, we must define the Bottleneck Amplitude, which is calculated
y measuring the distance between two diagrams, one of which is trivial. Thus, in this scenario, the perfect matching between two

diagrams is obvious and we can relate it to the maximum persistence.

𝑑𝐵(𝐷1, 𝐷𝑡) = 1
√

2
max
𝑥∈𝐷1

(𝑑𝑖 − 𝑏𝑖) (2)

Wasserstein Distance: The Wasserstein distance is a distance metric that measures the difference between two persistence diagrams,
1 and 𝐷2. Unlike the Bottleneck distance, which only considers the most significant feature and is a worst-case scenario metric,

he Wasserstein distance takes into account all features in the diagrams. This makes it more sensitive to differences across all
features [32]. To calculate the Wasserstein distance, we first find the 𝑝th power of the distance between corresponding points in
the diagrams, then take the 𝑝th root of the sum of those distances.

𝑊𝑝(𝐷1, 𝐷2) =
(

inf
𝛾

∑

𝑥∈𝐷1

‖𝑥 − 𝛾(𝑥)‖𝑝∞

)1∕𝑝

(3)

where 𝛾 ranges over all possible bijections between the points of 𝐷1 and 𝐷2, and 𝑝 is a real positive number, typically chosen 1
earth mover’s distance) or 2 (Euclidean distance).

Similar to the Bottleneck amplitude, we can define the Wasserstein Amplitude, representing the Wasserstein distance from a
rivial diagram for 𝑝 = 1 [3].

𝑊1(𝐷1, 𝐷𝑡) = 1
√

2

∑

𝑥∈𝐷1

(𝑑𝑖 − 𝑏𝑖) (4)

Persistence Landscape: The persistence landscape is a metric used in TDA to summarize and compare persistence diagrams.
Persistence landscapes map persistence diagrams into a function space, which can then be studied using tools from statistics and
machine learning [33]. The persistence landscape for diagram 𝐷1 is a sequence of functions 𝜆𝑘 ∶ R → [0,∞], with 𝑘 ranging from
ne to infinity, where each function 𝜆𝑘(𝑥) is defined as the 𝑘t h largest value of the piecewise linear function 𝑓 (𝑏𝑖, 𝑑𝑖)(𝑦) [33]:

𝑓 (𝑏𝑖, 𝑑𝑖)(𝑦) =
⎧

⎪

⎨

⎪

⎩

0 if 𝑦 ∉ (𝑏𝑖, 𝑑𝑖)
𝑦 − 𝑏𝑖 if 𝑦 ∈ [𝑏𝑖, (𝑏𝑖 + 𝑑𝑖)∕2]
−𝑦 + 𝑑𝑖 if 𝑦 ∈ [(𝑏𝑖 + 𝑑𝑖)∕2, 𝑑𝑖]

(5)

with the persistence landscape taken as:

𝜆𝑘(𝑦) = max
𝑖

𝑓 (𝑏𝑖, 𝑑𝑖)(𝑦) (6)

The amplitude calculation for persistence landscapes involves computing the 𝐿2 norm distance from the persistence landscape
𝜆 to the corresponding closest diagonal point in the trivial persistence diagram 𝜆′ [31]. This distance is given by:

‖𝜆 − 𝜆′‖2 =

( 𝑁
∑

𝑘=1
∫ |𝜆𝑘(𝑦) − 𝜆′𝑘(𝑦)|

2 𝑑 𝑦
)1∕2

(7)

where 𝑁 is the number of layers in the persistence landscape.

Persistence Silhouette: The persistence silhouette is a metric that quantifies the separation and quality of persistent homology
classes in a dataset. It provides a measure of how well-defined and distinct the topological features are in a persistence diagram.

his concept is closely related to the persistence landscape, which characterizes the evolution of these features across different
scales [34].
4 
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The persistence landscape (𝜆𝑗 (𝑥)) represents the persistence of features as functions of a parameter (often associated with scale).
To capture the separation of features at different scales, we introduce a weighted average of the landscape functions:

𝛷(𝑥) =
∑𝑛

𝑗=1 𝜔𝑗𝜆𝑗 (𝑥)
∑𝑛

𝑗=1 𝜔𝑗
(8)

To prioritize the importance of features with greater persistence values, we set the weights (𝜔𝑗) as 𝜔𝑗 = |𝑑𝑗 − 𝑏𝑗 |
𝑝 for 0 < 𝑝 < ∞.

This leads to the definition of the power-weighted silhouette:

𝛷(𝑃 ) =

∑𝑛
𝑗=1 |𝑑𝑗 − 𝑏𝑗 |

𝑝𝜆𝑗 (𝑥)
∑𝑛

𝑗=1 |𝑑𝑗 − 𝑏𝑗 |
𝑝 (9)

The amplitude of the silhouette can be calculated by measuring the 𝐿2 norm distance between 𝜆 and 𝜆′, representing the silhouette
and the trivial silhouette, respectively, at each uniform sample:

‖𝜆 − 𝜆′‖2 =

( 𝑁
∑

𝑘=1
∫ |𝜆𝑘(𝑥) − 𝜆′𝑘(𝑥)|

2 𝑑 𝑥
)1∕2

(10)

Here, 𝑁 is the number of layers in the persistence landscape.

Number of Off-Diagonal Points: This feature calculates the number of points above the diagonal line that persist longer than zero
over each homology dimension in the persistence diagram [3]. Counting the number of off-diagonal points can be a useful way to
assess the complexity of the dataset and the presence of persistent topological features that are not immediately short-lived. For
example, the number of off-diagonal points for 𝐻0 reflects the sampling rate of the point cloud and corresponds to the number of
oints in the point cloud, and the number of off-diagonal points for 𝐻1 and 𝐻2 indicates the number of holes and voids present in

the point cloud.

3. Real-time TDA feature extraction

In this section, the proposed algorithm for real-time applications is presented and applied to the DROPBEAR datasets. First, the
concept of transforming time series into point clouds and multi-resolution windowing for nonstationary signals is presented. After,
the DROPBEAR testbed is presented along with its simplified model along with a physical approach to the interpretation of the TDA
features to provide the context for the construction of the real-time feature extraction algorithm.

3.1. Transforming time series into point clouds

Experimental and field conditions usually involve the measurement of one or many states using strategically placed sensors, and
hese measurements are made available in the form of time series. In order to conduct TDA, these time series need to be transformed
nto an embedded point cloud, analogous to the FPC discussed in the prior section. A well accepted technique to do so is based
n Takens’ embedding theorem [1] and its extensions to non-autonomous systems with deterministic forcing [35], state-dependent

forcing [36], stochastic forcing [37], and more recently to multivariate datasets [38]. It consists of embedding a given measurement
vector 𝐱(𝑡) into a delay vector 𝝌(𝑡) = [𝐱(𝑡), 𝐱(𝑡−𝜏), 𝐱(𝑡− 2𝜏), … , 𝐱(𝑡− (𝜇− 1)𝜏)] of embedding dimension 𝜇 using measurements delayed
by time 𝜏. The embedding theorem states that given the appropriate selection of 𝜇 and 𝜏, 𝝌 will generate an embedding topologically
equivalent to the original dynamic system. Hence, 𝝌 can be utilized to compute topological invariants of the original system. Here,
a time series is transformed into a point cloud 𝑋 by assembling the delay vectors 𝐗(𝑡) = [𝝌(𝑡), 𝝌(𝑡− 𝜏), 𝝌(𝑡− 2𝜏), … , 𝝌(𝑡− (𝑘− 1)𝜏)]

ith 𝑘 consistent with 𝜇 and the size of 𝐱(𝑡). A critical constraint is that the embedding theorem only applies to stationary systems,
nd our dynamics of interest is nonstationary. As a solution, we use a sliding window 𝑤 restricted to the measurements of the

dataset 𝐱𝑤(𝑡) = [𝑥(𝑡), 𝑥(𝑡 − 1), 𝑥(𝑡 − 2), … , 𝑥(𝑡 −𝑤)] and assume that the dynamics are stationary within 𝑤 [31]. This assumption is
based on the knowledge that the dynamic system returns to a stationary state after disturbance. Thus, the point cloud only includes
data within 𝑤, where 𝑘 is now consistent with 𝜇 and the size of 𝐱𝑤(𝑡).

With this technique, TDA is based on the choices of 𝜇, 𝜏, and 𝑤. In theory, the embedding dimension is selected based on the
attractor size 𝑛, with 𝜇 > 2𝑛 which is not a necessary condition. In practice, 𝑛 is often unknown, and it is common to over-embed the
delay vector. Time delay 𝜏 needs to be selected such that the phase space formed by the point cloud unfolds sufficiently to contain
topological information, but before it starts to fold back into itself where topological information starts to get lost. Typically, 𝜇
is selected using the false nearest neighbor test, and 𝜏 through mutual information. The utilization of a sliding window 𝑤 is not
typical, because the vast majority of work utilizing the embedding theorem is based on stationary systems.

3.2. Multi-resolution windowing for nonstationary signals

Embedding of whole time series is practically impossible due to significant computational load needed for creating simplicial
complexes. Using the windowing method discussed above, one can extract TDA features in real-time, with a lag that is proportional
o the window size. For a single harmonic signal, the optimal time delay that provides data spread is 𝜏 = 0.25∕𝑓 , where 𝑓 is the given

signal’s frequency [12,39]. When reconstructing the phase space of harmonic signals using the optimum time delay 𝜏 = 0.25∕𝑓 , the
resulting shape is consistently a unit circle.
5 
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Literature has shown that the ideal embedding dimension for a single harmonic signal is 𝜇 = 2 [8]. Nonetheless, to account for
oise, results have shown that a dimension 𝜇 = 3 was more appropriate. A 3-dimensional point cloud emerges as a result, along with

its related persistence features of connected components or zero-dimensional holes (TDA feature 𝐻0), loops or one-dimensional holes
(TDA feature 𝐻1), and voids or two-dimensional holes (TDA feature 𝐻2). When constructing persistence diagrams using simulated,
noise-free data, feature 𝐻1 is born when feature 𝐻0 dies and feature 𝐻2 is born when feature 𝐻1 dies. Note that the death time and
the number of points related to the 𝐻0 feature depend on the number of points in the point clouds and their persistence interval
length converges to zero as the sampling rate increases. The maximum persistence of 𝐻0 represents the greatest spatial separation
between points within the point cloud. While the maximum distance remains constant for a fixed frequency and time delay, the
distances between points will change with a varying frequency 𝑓 , subsequently impacting the maximum persistence of 𝐻0. This
variability, when maintaining a fixed sampling rate, can be interpreted as a representation of the frequency of the system, as the
points become more dispersed within the point cloud. In systems characterized by high sampling rates, the length of all persistence
intervals of 𝐻0 tends to approach zero. Even as this value decreases, the normalized value of the maximum persistence of 𝐻0 remains
a meaningful indicator of the system’s frequency, although the maximum persistence of 𝐻0 is very sensitive to noise and not the
best choice to the interpreting systems with a high range of frequency and noise.

The existence of 𝐻1 represents the periodicity in signal and characterizes the evolution of 2D holes within the point cloud. The
aximum persistence of 𝐻1 for the unit circle is either equal to or greater than

√

3, as noted in [40]. However, when the time delay
falls below the optimal value (𝜏 < 0.25∕𝑓 ), the reconstructed phase space takes the form of an ellipse. The ratio of the ellipse’s major
axis to its minor axis becomes crucial in determining the maximum persistence of 𝐻1. A more circular ellipse corresponds to a higher
maximum persistence of 𝐻1, as discussed in [41,42] and as the system’s frequency increases, the hole within the ellipse formed by the
point cloud persists longer, and so does the maximum persistence of 𝐻1. In a noise-free scenario, the persistence diagram typically
features a single point for 𝐻1 representing the most significant hole. The birth time of 𝐻1 depends on the sampling rate of the system
since it defines the distance between points. As the sampling rate increases, meaning more data points are collected, the birth time
of 𝐻1 tends to zero. This study introduces a novel definition for maximum persistence, specifically accounting for scenarios where
the birth time is zero. This adjustment aims to provide a clearer understanding of the persistence of topological features, mitigating
the impact of sampling rate variations and point-to-point distances.

Regarding 𝐻2, it is important to note that the feature in a noise-free scenario typically is absent, mainly due to the repetitive
ature of the periodic function. In effect, the maximum persistence of 𝐻2 can be used to describe the noise in the system.

In a nonstationary system, because the frequency 𝑓 is expected to vary, we set a maximum allowable time delay 𝜏max = 0.25∕𝑓max
with 𝑓max being the maximum frequency of the system. Using a higher 𝜏 would risk folding the topological space onto itself, leading
to information loss. It is also important to select 𝜏 to allow the phase space to sufficiently unfold so as to generate topological features
without being unreasonably small.

To analyze the time series, we employ two sliding windows with different sizes. The first window has a size of 𝑤 = 1∕𝑓min + 2𝜏,
ith 𝑓min being the minimum frequency of the system. This ensures that the point cloud will form a complete loop, representing

𝐻1. However, as the frequency of the system increases, loops are expected to overlap, thus affecting the value of the maximum
persistence of 𝐻0. To address this issue, the second window is defined to be smaller (𝑤 = 1∕𝑓max + 2𝜏) for which points will not
overlap. This approach guarantees that the window size is sufficient to capture the characteristics of all frequencies in the data.

3.3. Application to DROPBEAR

The DROPBEAR testbed was developed to validate state estimation algorithms for high-rate dynamic systems. The testbed
Fig. 2) is fully described in [18]. Briefly, it consists of a 505 mm cantilever (clamped) beam that is subjected to a fast-moving

boundary condition, which is achieved using a movable cart. The cart is used to mimic sudden or gradual changes in stiffness. One
accelerometer is installed on the beam located 300 mm away from the beam’s fixed end to measure the response. The dynamics of
the beam can be excited either by the moving cart alone or by applying an impact load using an impact hammer. Additionally, a
mass is attached to the end of the beam using an electromagnet to explore how a change in mass affects systems dynamics. However,
in our study, the mass remains attached. Past research efforts using DROPBEAR data have simplified the testbed as a cantilever beam
with a time-varying boundary condition that varies its effective length 𝐿. In the context of free-vibration, the fundamental frequency
𝜔𝑗 of a beam can be estimated using Eq. (11) [43]:

𝜔𝑗 = 4𝜋2
√

𝐸 𝐼
𝜌𝐴

(

4𝑗 + 1
4𝐿

)2
(11)

where 𝜔𝑗 is the natural frequency of the 𝑗th mode of vibration in rad/s, 𝐸 is Young’s modulus, 𝐼 is the moment of inertia, 𝜌 is
density, 𝐴 is the cross-sectional area, and 𝐿 is the length of the beam. In our case, this equation can be used to map the fundamental
frequency of the beam to its length. Under free vibration and assuming that the first mode dominates the response, the response of
the beam can be simplified to be a single harmonic time series:

𝑥(𝑡) = 𝐴 cos(𝜔𝑡) = cos(2𝜋 𝑓 𝑡) (12)

where 𝐴 is the amplitude, 𝑥(𝑡) is the motion, 𝑓 is the natural (first) cyclic frequency in Hz, and 𝑡 is time in seconds.
The specialized case of DROPBEAR allows us to take a physical approach to the interpretation of the TDA features discussed in

the previous section. Thus, under a fixed time delay 𝜏, the frequency of the harmonic signal influences the spatial distance between
oints and the ratio of the major axis to the minor axis of the ellipse, subsequently affecting the maximum persistence of 𝐻 and
0
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𝐻1. This observation implies that the maximum persistence of 𝐻0 and 𝐻1 can be associated with the frequency of a harmonic
signal when a specific value of 𝜏 is chosen. In our case, when the system is disturbed by an impact caused by an impact hammer,
𝐻2 should appear in the persistence diagram. When dealing with a simple harmonic signal, we can easily correlate most of the
previously defined TDA features to the maximum persistence values within each homology group. As mentioned before, with a
arge enough 𝜏 and in the absence of noise with 𝑛 points in the point cloud, off-diagonal points in the persistence diagram should
onsist of 𝑛 𝐻0 points (𝑛 connected components), one 𝐻1 point (a long persistence hole), and no 𝐻2 point (no voids). The value of
he Bottleneck Amplitude is determined by measuring the maximum distance to the diagonal line, which is equal to the maximum
ersistences of 𝐻1 and 𝐻0. The Wasserstein Amplitude along with Persistence Landscape and Silhouette are also influenced by

the maximum persistence point’s value and the number of off-diagonal points in the persistence diagram. Since we have only one
point in the persistence diagram for 𝐻1 over a constant frequency, their normalized value will be equal to the normalized maximum
persistence. However there are some fluctuations in the persistence landscape and silhouette since the point cloud during a frequency
transition will not form a full ellipse, but these features should still be similar to the maximum persistences. Thus, the maximum
persistence of 𝐻1 is expected to play a major role in shaping TDA features.

4. Numerical simulations

We study the performance of our windowing method to extract the physically meaningful TDA features related to the persistence
interval of 𝐻0 and 𝐻1 for a nonstationary harmonic excitation. This study is conducted over two types of datasets: (1) a synthetic
noise-free harmonic signal; and (2) experimental data from DROPBEAR.

4.1. Synthetic harmonic signal

The synthetic harmonic signal is taken as

𝑥(𝑡) = cos(2𝜋 𝑓 (𝑡)𝑡) (13)

with 𝑓 (𝑡) varying between 20 and 50 Hz. The excitation is plotted in Figs. 3 and 4 (gray solid line). In this excitation, the frequency
emains constant at 20 Hz for the first two seconds (0–2 s) before increasing to 50 Hz over the next two seconds (2–4 s), after which it
emains at 50 Hz for another 2 s, and then decreases to 20 Hz and remains constant for another 2 s. The size of the moving windows
s 𝑤1 = 1∕𝑓min + 2𝜏 = 0.05 + 0.002 = 0.052 s for plotting the maximum persistence of 𝐻1, and 𝑤2 = 1∕𝑓max + 2𝜏 = 0.02 + 0.002 = 0.022
 for plotting the maximum persistence of 𝐻0. Data are embedded using 𝜏 = 0.001 s for both windows (0.25∕𝑓max = 0.005 s).

Figs. 3 and 4 plot the evolution of various TDA metrics related to the persistence interval of 𝐻0 and 𝐻1, respectively, compared
against the frequency of the signal (solid blue line). For TDA features related to the persistence interval of 𝐻0 (Fig. 3), we can
bserve that all features remain constant when the frequency is constant. Conversely, while the frequency is varying, all features
xhibit noise, yet with a trend following the shift in frequency. Notably, there is a clear link between Wasserstein and Bottleneck

amplitudes and maximum persistence being similar even in the transition part. During the shift from 20 Hz to 50 Hz, deviations
in the point cloud shape lead to fluctuations in the Persistence Landscape and Silhouette metrics. Another key characteristic in the
figure is the time lag in the features with respect to frequency which is equal to the window size. This lag is attributed to the sliding

indow method that takes measurements in the past, and diminishes when the frequency increases due to the more rapid creation
f complete loops.

For TDA features related to the persistence interval of 𝐻1 (Fig. 4), the plot exhibits more robust performance for all features,
attributed to the presence of one long-lasting hole in the dataset that persists during frequency transitions. Here, the silhouette and
landscape metrics tend to deviate slightly from the maximum persistence. The maximum persistence, along with the Wasserstein
nd Bottleneck amplitudes, relate more closely to the frequency. There is also a time lag in the features similar to that found over 𝐻0
eatures. From these results, we can conclude that the maximum persistence of 𝐻0 and 𝐻1 can be useful in tracking a single-frequency

system. These features, along with the maximum persistence of 𝐻2, are selected in moving forward with DROPBEAR data.

4.2. DROPBEAR

The investigation is pursued using realistic datasets taken from the DROPBEAR experimental testbed. First, the evolution of TDA
eatures is examined on two datasets with a dynamics resembling that of the synthetic dataset discussed in the previous section.
econd, the study is repeated on a dataset with a more complex dynamics. Datasets are taken from the dataset bank available
nline [24], and a low pass filter at 150 Hz is employed prior to running the code in Python on an Intel(R) Xeon(R) CPU E3-1240

v5 3.50 GHz.
The first two datasets correspond to Dataset-6, where one experiment does not involve the use of an impact hammer (test 1)

nd the other does (test 2). In those tests, the cart is initially located 50 mm from the clamp, moves to 200 mm from the clamp,
nd comes back to its original position. The temporal location of the cart is plotted in Figs. 6 to 10 (blue line). The system’s

dominating frequency varies between 17.7 Hz (at 50 mm) and 31.0 Hz (at 200 mm). Accelerometer data was acquired at 25 kHz.
ata is embedded using 𝜏 = 0.004 s (0.25∕𝑓max = 0.008 s) and the size of the moving windows are taken as 1∕𝑓min + 2𝜏 = 0.06 and
∕𝑓max+ 2𝜏 = 0.04 s. The window slides every 0.001 s to lessen computational demands. Figs. 5 and 6 plot the maximum persistence

for different homology groups for tests 1 and 2, respectively. Results are compared against those obtained using a short-time Fourier
transform (STFT) conducted under a window size of 4096 samples (equivalent to 0.164 s) and a window length overlap of 0.008 s.
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Fig. 2. Picture of the DROPBEAR testbed.

Fig. 3. Evolution of TDA features constructed from 𝐻0 over a synthetic, noise-free harmonic signal.

Data obtained from the maximum persistence of 𝐻0 and 𝐻1 is post-processed to map results to the cart location. Combining
the assumption that these TDA features relate linearly to frequency and the frequency-cart location relationship from Eq. (11), we
conduct the following linear regression

𝑥2 = 𝑎0 + 𝑎1𝐻𝑖, (14)

where 𝑥 is the cart location in mm, 𝑎0 and 𝑎1 are regression parameters estimated using a least squares estimator (LSE), and 𝐻𝑖 is
the homology group for 𝑖 = 0, 1. A similar process is conducted on STFT data to allow a better comparison. Data from the maximum
persistence of 𝐻2, because it does not relate to the system’s frequency, is normalized between 0 (minimum value) and 1 (maximum
value). In linear regression analysis of each dataset, the initial part of the excitation is removed because of the presence of high
noise. For test 1, test 2, and test 3, the initial noisy parts are the first 0.74 s, 0.43 s, and 1.4 s of the excitation, respectively.

In test 1 (no impact hammer, Fig. 5), the initial part of the excitation returns very noisy TDA features, attributable to the low
acceleration signal as the cart is yet to move. As the cart starts moving, both the maximum persistence of 𝐻0 (shown by the purple
dotted line) and 𝐻1 (shown by the red dotted line) correlate with the cart location. At the end of the excitation, the cart has a
slightly richer acceleration signal due to free vibrations after the last movement of the cart, thus returning TDA features exhibiting
less noise than at the beginning. The maximum persistence of 𝐻2 remains close to zero for most of the signal, except at the beginning
during the low acceleration signal attributable to higher noise.

In test 2 (impact hammer, Fig. 6), all of the three maximum persistences exhibit less noise after the first hammer impact,
attributable to the richer signal. Another difference with respect to test 1 is that the maximum persistence of 𝐻 is slightly more
1
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Fig. 4. Evolution of TDA features constructed from 𝐻1 over a synthetic, noise-free harmonic signal.

noisy than that of 𝐻0. Also, the maximum persistence of 𝐻2 peaks during impacts attributable to the local signal being non-harmonic
and can thus be used to identify the impacts themselves.

The third dataset (test 3) corresponds to Dataset-2 [44]. In this test, the cart movement is more complex and divided into three
parts, and the experiment does not utilize the impact hammer. The cart is initially located 50 mm from the clamp, and moves
back and forth to 70, 90, 110, 130, 150, and 170 mm from the clamp with different ramping and holding patterns, as shown in
Fig. 7(blue line). The system’s dominating frequency varies between 44 Hz (at 50 mm) and 96 Hz (at 170 mm). Accelerometer data
was acquired at 12.5 kHz. Data is embedded using 𝜏 = 0.0008 s (0.25∕𝑓max = 0.002 s) and the size of the moving windows are taken
as 1∕𝑓min + 2𝜏 = 0.025 s and 1∕𝑓max + 2𝜏 = 0.018 s. The window slides every 0.001 s to lessen computational demands.

The difference between tests 1 and 2, and test 3 lies in the velocity and the acceleration of the cart. Both tests 1 and 2 have
a maximum cart velocity of 120 mm/s and a maximum acceleration of 250 mm/s2. In the second section of test 3, the maximum
cart velocity and acceleration are more similar to tests 1 and 2, measuring 70 mm/s and 130 mm/s2, respectively. However, in
sections 1 and 3 of test 3, the maximum cart velocity and acceleration reach 250 mm/s (maximum allowable velocity of the test)
and 3600 mm/s2, thus exhibiting features closer to those of a high-rate system.

The evolution of TDA features for test 3 is plotted in Fig. 7, with Figs. 8 to 10 respectively zooming over the first, second, and
third sections of the cart displacements. A notable observation is that, despite the lack of impacts, the maximum persistence of 𝐻2
is often non-zero when the cart initiates movement, a behavior more noticeable over the first section of the displacements (Fig. 8),
attributable to a higher initial acceleration of the cart compared to that in tests 1 and 2. Results also show that the maximum
persistence of 𝐻1 outperforms 𝐻0.

Results from DROPBEAR show that the maximum persistence of 𝐻0 and 𝐻1 can be mapped to the cart location. Note that
parameterizing the map is out of the scope of this research because we focus on studying whether TDA features can be used to
explain the dynamics of a high-rate system. However, a rapid evaluation of the results of the regression conducted on Eq. (14) listed
in Table 1 indicates that (1) the regression parameters remain within the same magnitude across test types, and (2) feature 𝐻1
provides a better estimation of the cart location relative to 𝐻0 when comparing the quality-of-fits (R2).

Next, we further examine the performance of the maximum persistence of 𝐻1 at mapping to the correct cart location. The
mapping performance is assessed using three performance metrics (𝐽1, 𝐽2, and 𝐽3) over the truncated part of the signal, after
removing the initial noisy segment. These metrics are constructed to denote improvement over decreasing numbers.

Metric 𝐽1 is the mean absolute error between the actual cart location and the mapped cart location for the entire excitation or
section of the excitation. Metric 𝐽2,𝑖 is the number of instances over the signal that the estimation does not remain below a given
distance 𝑖 (in mm, here taken as 𝑖 = 5, 10, and 20 mm, with 20 mm arbitrarily taken as an acceptable target). Metric 𝐽 is the mean
3,𝑖
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Fig. 5. Evolution of TDA features over test 1 (without impact hammer).

Fig. 6. Evolution of TDA features over test 2 (with impact hammer).

Fig. 7. Evolution of TDA features over test 3.
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Fig. 8. Evolution of TDA features over test 3 — section 1.

Fig. 9. Evolution of TDA features over test 3 — section 2.

Fig. 10. Evolution of TDA features over test 3 — section 3.
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Table 1
Results from LSE.
Test Feature 𝑎0 𝑎1 R2

Test 1 𝐻0 −0.41 3.17 0.95
𝐻1 −0.8 1.85 0.95
STFT −0.13 1.07 0.98

Test 2 𝐻0 −0.07 5.25 0.63
𝐻1 −1.05 2.31 0.91
STFT −0.11 1.059 0.96

Test 3 𝐻0 −0.15 4.25 0.86
𝐻1 −0.92 2.47 0.87
STFT −0.034 0.93 0.95

Table 2
Performance results for cart localization.
Test Feature 𝐽1 𝐽2,5 𝐽2,10 𝐽2,20 𝐽3,5 𝐽3,10 𝐽3,20

(mm) (%) (mm) (%) (mm) (%) (mm)

Test 1 𝐻1 14.1 65 50 25 2.2 3.8 7.5
STFT 11.9 81 48 14 2.8 5.6 10.6

Test 2 𝐻1 16 88 68 18 2.4 5.6 10.5
STFT 12.1 84 52 14 2.4 5.6 10.8

Test 3 𝐻1 8.7 46 29 12 1.4 2.9 4.9
(sect. 1) STFT 6.3 38 13 3 3.4 4.6 5.4

Test 3 𝐻1 10.2 56 34 15 1.9 3.8 6.0
(sect. 2) STFT 7.3 50 23 6 3.5 4.6 6.4

Test 3 𝐻1 5.7 30 18 8 1.3 2.1 3.4
(sect. 3) STFT 5.9 21 12 5 4 4.4 5.1

absolute error of the cart location when the estimated cart position is within the given distance 𝑖 (in mm). In other words, 𝐽1 is an
verall indication of cart location fitting, 𝐽2,𝑖 is an indication of how often the estimation is correct within the given error threshold,

and 𝐽3,𝑖 is an indication of how correct the cart location when the estimation is within the given error threshold. Table 2 and Fig. 11
present results for these performance metrics across the three tests through radar plots.

Metric 𝐽1 shows that the TDA metric remains within acceptable ranges (under 20 mm), and that it tends to perform similarly to
the STFT for very rapid changes in movements (test 3 — section 3). Metric 𝐽2 shows that the TDA feature maps usually above 80%
of the time to within 20 mm of the correct cart location. However, it significantly underperformed for test 2 under 5 and 10 mm,
attributable to the use of impact loads. It also outperformed the STFT feature under tests 1 and 2, and showed excellent tracking
over test 3 — section 3. Metric 𝐽3 often shows that both the TDA features performed at least similarly to the STFT feature, if not
better. In particular, it significantly outperformed the STFT feature under test 3, demonstrating the promise of the TDA feature at
tracking rapidly changing states.

5. Conclusion

The objective of this study was to investigate the applicability of TDA features for conducting real-time state estimation on
igh-rate systems, characterized by rapidly changing dynamics. In this case, the application of interest was the identification of a
oving boundary condition through the assessment of the system’s frequency, thus reducing the problem of mapping TDA features

o the dominating frequency of the system. Some TDA features were explored on a physical perspective, and their applicability to
igh-rate state estimation problems was assessed. To cope with the system’s nonstationarity, a multi-resolution sliding windowing
ethod was proposed, along with a technique to embed time series data into a point cloud. The method was applied to a set of

ynthetic data, and to realistic experimental data obtained from the dynamic reproduction of projectile in ballistic environments for
advanced research (DROPBEAR) testbed, with one set of data including high-rate variations in the boundary condition.

Results from simulations on synthetic data showed that the maximum persistences of 𝐻0 and 𝐻1 provided a stable estimation
f the cart location. Results from the Bottleneck and Wasserstein distances, persistence landscape, and silhouette exhibited a higher
evel of noise. The use of the maximum persistence was further evaluated on DROPBEAR data. Results from low cart acceleration
ests showed that both 𝐻0 and 𝐻1 could be used to track the moving cart, with 𝐻1 outperforming 𝐻0. The maximum persistence of
2 was shown to be useful in detecting noise created by impact loads. Similar results were observed on the higher cart acceleration

ataset. A further investigation of the TDA feature showed that it could be used to track the cart location within an acceptable range
and that it performed similarly to or overperformed the STFT feature when the estimation was within a given bound. However, the
STFT feature outperformed the TDA feature in terms of being within a given estimation bound more often, except for test 3 —
section 3 where results were similar.

Overall, results demonstrated that TDA features can be used to track dynamic systems with a dominating, nonstationary
undamental frequency and that it was performing well for more rapid dynamics, in particular relative to the use of an STFT.
12 
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Fig. 11. Radar plots of the performance metrics 𝐽1–𝐽3,20: (a) test 1; (b) test 2; (c) test 3-sect. 1; (d) test 3-sect. 2; and (e) test 3-sect. 3.

Future work includes the extension of the study to multi-harmonic systems, and to formulation of algorithms to better map TDA
features to the system’s state(s).
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Appendix

The following section provides a more formal mathematical definition of TDA. Its content is drawn from known results seen
in [45].
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Topological Data Analysis (TDA)

Topological Data Analysis offers a framework to study the topology of point clouds using fundamental concepts of modern
mathematics, particularly through homology theory [45]. A topological space is a set of points 𝑇 equipped with a collection of
subsets  , which satisfies the following conditions:

• The empty set and the entire set 𝑇 are included in  .
• The union of any collection of subsets in  is also in  .
• The intersection of any finite collection of subsets in  is also in  .

The collection  is referred to as a topology on 𝑇 . The subsets in  are known as open sets. A neighborhood of a point 𝑝 ∈ 𝑇
s any open set that contains 𝑝. For example, the open intervals of the real number line R form a topology on R often called its
tandard topology. A metric space 𝑋 is a specific type of topology that arises from metric 𝑑 which is a distance function between
lements of the set that satisfies the following properties for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 :

• 𝑑(𝑥, 𝑦) ≥ 0
• 𝑑(𝑥, 𝑦) = 0 ⟺ 𝑥 = 𝑦
• 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥)
• 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) ≥ 𝑑(𝑥, 𝑧)
An open ball in a metric space (𝑋 , 𝑑) centered at a point 𝑥 ∈ 𝑋 with radius 𝑟 > 0 is defined as: 𝐵(𝑥, 𝑟) = {𝑦 ∈ 𝑋 ∣ 𝑑(𝑥, 𝑦) < 𝑟}. The

collection of all such open balls forms a basis for the topology on 𝑋. For example, the familiar 𝑛-dimensional Euclidean space R𝑛,
where 𝑛 is a positive integer, is a metric space whose distance function is the standard Euclidean distance. This induces a standard
topology based on open balls (recall that the real number line R = R1 is also the 1-dimensional version of R𝑛).

Let (𝑇 ,  ) and (𝑈 , ) be topological spaces. A homeomorphism is a bijective map ℎ ∶ 𝑇 → 𝑈 such that ℎ and ℎ−1 are both
continuous. In other words, a homeomorphism is a bijective function ℎ between two topological spaces that preserve the open set
structure in both directions [45]. Two topological spaces 𝑇 and 𝑈 are said to be homeomorphic if there exists a homeomorphism
between them. This relationship defines an equivalence relation on the class of all topological spaces. Hence, two homeomorphic
topological spaces are considered topologically equivalent [45].

TDA typically deals with a particular type of topological space called a manifold. An 𝑚 dimensional manifold 𝑀 is a topological
pace where the neighborhoods of all its points are homeomorphic to R𝑚

There is another notion of comparing topological spaces that is weaker than a homeomorphism since it does not, for example,
ecessarily preserve dimension. That is known as a homotopy equivalence. Intuitively, it relates how spaces can be continuously
eformed from one to the other. Homotopy equivalence is more practical in TDA, showing two spaces are equivalent if one can be
ontinuously deformed from one to the other without cutting or tearing. Let 𝑔 ∶ 𝑋 → 𝑈 and ℎ ∶ 𝑋 → 𝑈 be continuous maps. A

homotopy is a map 𝐻 ∶ 𝑋 × [0, 1] → 𝑈 such that 𝐻(., 0) = 𝑔(𝑥) and 𝐻(., 1) = ℎ(𝑥) for all 𝑥 ∈ 𝑋. Two maps 𝑔 and ℎ are homotopic
f there exists a homotopy 𝐻 connecting them [45]. Two topological spaces 𝑇 and 𝑈 are homotopy equivalent if there exist maps
∶ 𝑇 → 𝑈 and ℎ ∶ 𝑈 → 𝑇 such that ℎ◦𝑔 is homotopic to the identity map id𝑇 ∶ 𝑇 → 𝑇 and 𝑔◦ℎ is homotopic to the identity
ap id𝑈 ∶ 𝑈 → 𝑈 . For example, a 2D annulus (or washer) embedded in R2 is homotopy equivalent to one of its circular 1D

boundaries through a linear radial pointwise contraction (a homotopy) of the lines forming the diameter of the annulus’s interior
to the intersecting points on that annulus’s boundary.

To approximate a manifold, simplicial complexes can be used. Simplicial complexes provide a combinatorial framework for
studying the topological properties of manifolds. A simplicial complex is a collection of simplices. For 𝐾 ≥ 0, a 𝑘-simplex 𝜎 in an
uclidean space R2 is the convex hull of a set p of 𝐾 + 1 affinely independent points in 𝑅. In particular, a 0-simplex is a vertex, a
-simplex is an edge, a 2-simplex is a triangle, a 3-simplex is a tetrahedron, etc.

A geometric simplicial complex 𝐾, also known as a triangulation, is a set containing finitely many simplices that satisfies the
following two restrictions: (1) K contains every face of each simplex in 𝐾. (2) For any two simplices, 𝜎 , 𝜏 ∈ 𝐾, their intersection
𝜎 ∩ 𝜏 is either empty or a face of both 𝜎 and 𝜏.

Given a simplicial complex 𝑘 and a manifold 𝑀 , we say that 𝐾 is a triangulation of 𝑀 if the underlying space |𝐾| is
homeomorphic to 𝑀 . Note that if 𝑀 is a 𝑘-manifold, the dimension of 𝐾 is also 𝑘.

There are many ways to build a simplicial complex. There are two major methods to associate a complex with the point cloud
data, namely the Cech Complex and Vietoris–Rips complex [25]. The Čech complex 𝜖(𝑉 ) of a set of points 𝑉 = {𝑣1, 𝑣2,… , 𝑣𝑛} ⊂ R𝑑

t a scale 𝜖 > 0 is defined as the simplicial complex where a 𝑘-simplex [𝑣𝑖0 , 𝑣𝑖1 ,… , 𝑣𝑖𝑘 ] is in 𝜖(𝑉 ) if and only if the 𝜖-balls centered
t these points have a non-empty intersection:

[𝑣𝑖0 , 𝑣𝑖1 ,… , 𝑣𝑖𝑘 ] ∈ 𝜖(𝑉 ) ⟺

𝑘
⋂

𝑗=0
𝐵𝜖(𝑣𝑖𝑗 ) ≠ ∅. (15)

Similarly, the Vietoris–Rips complex 𝜖(𝑉 ) is defined as the simplicial complex where a 𝑘-simplex [𝑣𝑖0 , 𝑣𝑖1 ,… , 𝑣𝑖𝑘 ] is in 𝜖(𝑉 ) if
and only if the pairwise distances between the points are at most 𝜖:
[𝑣𝑖0 , 𝑣𝑖1 ,… , 𝑣𝑖𝑘 ] ∈ 𝜖(𝑉 ) ⟺ ‖𝑣𝑖𝑗 − 𝑣𝑖𝑙‖ ≤ 𝜖 for all 0 ≤ 𝑗 < 𝑙 ≤ 𝑘. (16)
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In simpler terms, in the Čech complex, 𝑘 + 1 points form a 𝑘-simplex if the intersection of their 𝜖-balls is non-empty. In the
Vietoris–Rips complex, 𝑘 + 1 points form a 𝑘-simplex if all pairwise distances between the points are at most 𝜖. The choice of 𝜖
significantly affects the resulting simplicial complex.

Vietoris Rips complexes are a powerful tool for understanding the underlying space’s homotopy properties, and to construct these,
we need the appropriate value of 𝜖. However, in practical application, determining the value of 𝜖 for real data can be challenging,
s it often remains unknown. To address this challenge we adopt a flexible approach. We continuously dilate the real-valued 𝜖 for
ll time and construct/record an evolving simplicial complex structure for every 𝜖. These complexes, representing different scales or
evels of connectivity in the data, form a sequence. This sequence of simplicial complexes is known as a filtered simplicial complex
r filtration which captures the developing topological features of the data as 𝜖 varies. By examining the complexes across the range
f 𝜖 values, we gain insights into the data’s topological structures at multiple resolutions. Let (𝑉 ) be an abstract Vietoris–Rips
omplex. A filtration on (𝑉 ) is defined as a sequence of simplicial complexes

∅ = 0(𝑉 ) ⊂ 1(𝑉 ) ⊂ 2(𝑉 ) ⊂ ⋯ ⊂ (𝑉 ) (17)

A given filtration (𝑉 ) at the topological level induces algebraic representations and mappings between those representations.
For example, we can represent any 𝑖(𝑉 ) ⊂ (𝑉 ) for a positive integer 𝑖 in the filtration by adjacency matrices. These, in turn,
have algebraic group structures in their respective dimensions (or rank). Furthermore, the inclusions of the filtration induce linear
transformations between those groups. This creates a (linear) algebraic system that encodes the filtration’s evolution over time.

With this representation, we are able to analyze the shape of a given manifold by evaluating these so-called homology groups,
denoted as 𝐻𝑘(𝑀), where 𝑘 represents the dimension of homology. The 𝐻𝑘(𝑀) reveal the presence of multidimensional features such
as connected components (𝐻0), loops or holes (𝐻1), and voids (𝐻2), and higher dimensional ‘‘holes’’. The ranks of these homology
roups are known as Betti numbers, which count the number of such features.

Data availability

Data will be made available on request.

References

[1] Floris Takens, Detecting strange attractors in turbulence, in: David Rand, Lai-Sang Young (Eds.), Dynamical Systems and Turbulence, Warwick 1980,
Springer Berlin Heidelberg, Berlin, Heidelberg, 1981, pp. 366–381.

[2] Gunnar Carlsson, Topology and data, Bull. Amer. Math. Soc. 46 (2) (2009) 255–308.
[3] Paul T. Schrader, Topological multimodal sensor data analytics for target recognition and information exploitation in contested environments, in: Signal

Processing, Sensor/Information Fusion, and Target Recognition XXXII, Vol. 12547, SPIE, 2023, pp. 114–143.
[4] Jesse J. Berwald, Marian Gidea, Mikael Vejdemo-Johansson, Automatic recognition and tagging of topologically different regimes in dynamical systems,

Discontinuity Nonlinearity Complex. 3 (4) (2014) 413–426.
[5] Firas A. Khasawneh, Elizabeth Munch, Chatter detection in turning using persistent homology, Mech. Syst. Signal Process. 70 (2016) 527–541.
[6] Jose A. Perea, Anastasia Deckard, Steve B. Haase, John Harer, SW1PerS: Sliding windows and 1-persistence scoring; discovering periodicity in gene

expression time series data, BMC Bioinformatics 16 (1) (2015).
[7] Saba Emrani, Thanos Gentimis, Hamid Krim, Persistent homology of delay embeddings and its application to wheeze detection, IEEE Signal Process. Lett.

21 (4) (2014) 459–463.
[8] Cássio M.M. Pereira, Rodrigo F. de Mello, Persistent homology for time series and spatial data clustering, Expert Syst. Appl. 42 (15–16) (2015) 6026–6038.
[9] Paul Samuel Ignacio, Christopher Dunstan, Esteban Escobar, Luke Trujillo, David Uminsky, Classification of single-lead electrocardiograms: TDA informed

machine learning, in: 2019 18th IEEE International Conference on Machine Learning and Applications, ICMLA, IEEE, 2019, pp. 1241–1246.
[10] Hunter Dlugas, Electrocardiogram arrhythmia detection with novel signal processing and persistent homology-derived predictors, Data Sci. 7 (1) (2024)

29–53.
[11] Alperen Karan, Atabey Kaygun, Time series classification via topological data analysis, Expert Syst. Appl. 183 (2021) 115326.
[12] Tristan Gowdridge, Nikolaos Dervilis, Keith Worden, On topological data analysis for structural dynamics: an introduction to persistent homology, ASME

Open J. Eng. 1 (2022) 011038.
[13] Yuhei Umeda, Time series classification via topological data analysis, Inf. Media Technol. 12 (2017) 228–239.
[14] Nalini Ravishanker, Renjie Chen, An introduction to persistent homology for time series, Wiley Interdiscip. Rev. Comput. Stat. 13 (3) (2021) e1548.
[15] Morgan Byers, Lee B. Hinkle, Vangelis Metsis, Topological data analysis of time-series as an input embedding for deep learning models, in: IFIP International

Conference on Artificial Intelligence Applications and Innovations, Springer, 2022, pp. 402–413.
[16] Jonathan Hong, Simon Laflamme, Jacob Dodson, Bryan Joyce, Introduction to state estimation of high-rate system dynamics, Sensors 18 (1) (2018) 217.
[17] Jacob Dodson, Austin Downey, Simon Laflamme, Michael D. Todd, Adriane G. Moura, Yang Wang, Zhu Mao, Peter Avitabile, Erik Blasch, High-rate

structural health monitoring and prognostics: An overview, in: Ramin Madarshahian, Francois Hemez (Eds.), Data Science in Engineering, Volume 9,
Springer International Publishing, Cham, 2022, pp. 213–217.

[18] Bryan Joyce, Jacob Dodson, Simon Laflamme, Jonathan Hong, An experimental test bed for developing high-rate structural health monitoring methods,
Shock Vib. 2018 (1) (2018) 3827463.

[19] Austin Downey, Jonathan Hong, Jacob Dodson, Michael Carroll, James Scheppegrell, Millisecond model updating for structures experiencing unmodeled
high-rate dynamic events, Mech. Syst. Signal Process. 138 (2020) 106551.

[20] Zihan Wu, Michael D. Todd, Uncertainty-quantified damage identification for high-rate dynamic systems, in: Data Science in Engineering, Volume 9:
Proceedings of the 39th IMAC, A Conference and Exposition on Structural Dynamics 2021, Springer, 2022, pp. 17–20.

[21] Jin Yan, Simon Laflamme, Jonathan Hong, Jacob Dodson, Online parameter estimation under non-persistent excitations for high-rate dynamic systems,
Mech. Syst. Signal Process. 161 (2021) 107960.

[22] Vahid Barzegar, Simon Laflamme, Chao Hu, Jacob Dodson, Ensemble of recurrent neural networks with long short-term memory cells for high-rate
structural health monitoring, Mech. Syst. Signal Process. 164 (2022) 108201.

[23] Matthew Nelson, Vahid Barzegar, Simon Laflamme, Chao Hu, Austin R.J. Downey, Jason D. Bakos, Adam Thelen, Jacob Dodson, Multi-step ahead state
estimation with hybrid algorithm for high-rate dynamic systems, Mech. Syst. Signal Process. 182 (2023) 109536.
15 



A. Razmarashooli et al. Mechanical Systems and Signal Processing 224 (2025) 112048 
[24] Matthew Nelson, Simon Laflamme, Chao Hu, Adriane G. Moura, Jonathan Hong, Austin Downey, Peter Lander, Yang Wang, Erik Blasch, Jacob Dodson,
Generated datasets from dynamic reproduction of projectiles in ballistic environments for advanced research (DROPBEAR) testbed, IOP SciNotes 3 (4)
(2022) 044401.

[25] Gunnar Carlsson, Mikael Vejdemo-Johansson, Topological Data Analysis with Applications, Cambridge University Press, 2021.
[26] Zachary Alexander, A Topology-Based Approach for Nonlinear Time Series with Applications in Computer Performance Analysis (Ph.D. thesis), University

of Colorado at Boulder, 2012.
[27] Herbert Edelsbrunner, David Letscher, Afra Zomorodian, Topological persistence and simplification, Discrete Comput. Geom. 28 (2002) 511–533.
[28] Guillaume Tauzin, Umberto Lupo, Lewis Tunstall, Julian Burella Pérez, Matteo Caorsi, Anibal M. Medina-Mardones, Alberto Dassatti, Kathryn Hess,

Giotto-tda: A topological data analysis toolkit for machine learning and data exploration, J. Mach. Learn. Res. 22 (39) (2021) 1–6.
[29] Frédéric Chazal, Bertrand Michel, An introduction to topological data analysis: fundamental and practical aspects for data scientists, Front. Artif. Intell. 4

(2021) 108.
[30] David Cohen-Steiner, Herbert Edelsbrunner, John Harer, Stability of persistence diagrams, in: Proceedings of the Twenty-First Annual Symposium on

Computational Geometry, 2005, pp. 263–271.
[31] Marian Gidea, Yuri Katz, Topological data analysis of financial time series: Landscapes of crashes, Phys. A 491 (2018) 820–834.
[32] Herbert Edelsbrunner, John L. Harer, Computational Topology: An Introduction, American Mathematical Society, 2022.
[33] Peter Bubenik, Paweł Dłotko, A persistence landscapes toolbox for topological statistics, J. Symbolic Comput. 78 (2017) 91–114.
[34] Frédéric Chazal, Brittany Terese Fasy, Fabrizio Lecci, Alessandro Rinaldo, Larry Wasserman, Stochastic convergence of persistence landscapes and silhouettes,

in: Proceedings of the Thirtieth Annual Symposium on Computational Geometry, 2014, pp. 474–483.
[35] Jaroslav Stark, Delay embeddings for forced systems. I. Deterministic forcing, J. Nonlinear Sci. 9 (1999) 255–332.
[36] Jaroslav Stark, David S. Broomhead, Michael Evan Davies, J. Huke, Delay embeddings for forced systems. II. Stochastic forcing, J. Nonlinear Sci. 13 (2003)

519–577.
[37] Victoria Caballero, On an embedding theorem, Acta Math. Hungar. 88 (2000) 269–278.
[38] Ziyu Jia, Youfang Lin, Yunxiao Liu, Zehui Jiao, Jing Wang, Refined nonuniform embedding for coupling detection in multivariate time series, Phys. Rev.

E 101 (6) (2020) 062113.
[39] Michael Small, Applied Nonlinear Time Series Analysis: Applications in Physics, Physiology and Finance, vol. 52, World Scientific, 2005.
[40] Jose A. Perea, John Harer, Sliding windows and persistence: An application of topological methods to signal analysis, Found. Comput. Math. 15 (2015)

799–838.
[41] Michał Adamaszek, Henry Adams, The Vietoris–Rips complexes of a circle, Pacific J. Math. 290 (1) (2017) 1–40.
[42] Michał Adamaszek, Henry Adams, Samadwara Reddy, On Vietoris–Rips complexes of ellipses, J. Topol. Anal. 11 (03) (2019) 661–690.
[43] Eduardo Kausel, Advanced Structural Dynamics, Cambridge University Press, 2017.
[44] Austin Downey, Jonathan Hong, Jacob Dodson, Michael Carroll, James Scheppegrell, Dataset-2-DROPBEAR-acceleration-vs-roller-displacement, 2020.
[45] Tamal Krishna Dey, Yusu Wang, Computational Topology for Data Analysis, Cambridge University Press, 2022.
16 


